Register 12:

Always set to: 0001041c (normal operation, phase sync not used)

Register 11:

Always set to: 0061300b (reserved)

Register 10:

Calculate (8 bit result):

$$
A D C_{-} C L K D I V=I N T\left(\frac{\frac{f_{p f d}}{100000}-2}{4}+0.5\right)
$$

Use ADC_EN=1 and ADC_CONV=1
Set to: $00 \mathrm{c} 0000 \mathrm{a}+(\mathrm{ADC}$-CLKDIV $\ll 6)+(\mathrm{ADC}$ CONV $\ll 5)+(\mathrm{ADC}$ EN $\ll 4) \quad$ (ADC settings)
Register 9:
Calculate (8 bit result):

$$
\text { VCO_Band_Div }=I N T\left(\frac{f_{p f d}}{2400000}+0.5\right)
$$

Take:

$$
\begin{gathered}
A L C_{-} T O=I N T\left(\frac{50 \mu s \cdot f_{p f d}}{\text { Timeout }}+0.5\right) \\
L o c k_{-} T O=I N T\left(\frac{20 \mu s \cdot f_{p f d}}{\text { Timeout }}+0.5\right) \\
\text { ALC_TO }=30(5 \mathrm{bit}) \\
\text { LOCK_TO }=12(5 \mathrm{bit}) \quad \rightarrow \text { as ALC_TO }=\text { LOCK_TO } \times 2.5
\end{gathered}
$$

Calculate (10 bit result):

$$
\text { Timeout }=I N T\left(\frac{50 \mu s \cdot f_{p f d} M H z}{A L C_{-} T O}+0.5\right)=\operatorname{INT}\left(\frac{50 \mu s \cdot f_{p f d} M H z}{30}+0.5\right)
$$

Set to: (VCO_Band_Div<<24) + (Timeout<<14) + (ALC_TO<<9) + (LOCK_TO<<4) + 9 (timeout settings)

Register 8:
Always set to: 102d0428 (reserved)

Register 7:

We take enough time for locking (still only a few $\mu \mathrm{s}$) and we set the factional-N mode stuff...
Use: $L E=1, L D _C Y C=3, L O L M=0, F _N _P R E C=3, L D M=0$
Set to: $10000007+(\mathrm{LE} \ll 25)+($ LD_CYC $\ll 8)+($ LOLM $\ll 7)+($ F_N_PREC $\ll 5)+($ LDM $\ll 4)$
(lock settings)

Register 6:

GB=1 (Gated bleed to improve lock speed, only use with digital lock detect enabled)
$N B=1$ (Negative bleed recommended for frac- N applications)
$\mathrm{FB}=1$ (use fundamental output from VCO)
Set RDIV that the VCO stays within 3.4 ...6.8GHz range

$$
f_{\text {out }}=\frac{f_{v c o}}{2^{\text {RDIV }}} \quad \rightarrow \quad R D I V=\log 2\left(\frac{f_{v c o}}{f_{\text {out }}}\right)
$$

Set BC (bleed current) so that

$$
\frac{4}{N}<\frac{I_{\text {bleed }}}{I_{C P}}<\frac{10}{N}
$$

MTLD=1 (keep outputs muted until lock reached)
Enable RFB and/or RFA depending on what RF output to use (auxiliary B and/or main A)
Set PWR to $0 . . .3$ corresponding to $-4 . . .5 \mathrm{dBm}$ (steps of 3 dBm) for output A

Set to: $(\mathrm{GB} \ll 30)|(\mathrm{NB} \ll 29)|(\mathrm{FB} \ll 24)|(\mathrm{RDIV} \ll 21)|(\mathrm{BC} \ll 13)|(\mathrm{MTLD} \ll 11)|(\mathrm{RFB} \ll 10)$ |(RFA<<6)|(PWR<<4)|6

Register 5:
Always set to: 00800025 (reserved)

Register 4:

f_pfd must be $<125 \mathrm{MHz}$ and is calculated as:

$$
f_{p f d}=f_{r e f} \cdot \frac{1+D}{R \cdot(1+T)}
$$

Set MUXOUT $=6$ (digital lock detect) for GB in register 6 to work
Set $\mathrm{D}=0$ (you may enable reference doubler to improve system noise performance)
Set $\mathrm{T}=0$ to disable reference divider (only needed if PFD gets $>125 \mathrm{MHz}$)
Set $R=1$, we don't need this (use this if requiring certain steps with simpler calculations)
Set $D B=1$, we want double-buffering of the RF divider for an arbitrary f_out programming
Set $C P=2$, this is the recommended (0.9 mA setting for low spur)
Set $R M=1, R M=0$ is recommended for any f_ref $<250 \mathrm{MHz}$, but does not lock on my board...
Set $L S=1$, we use a 3.3 V interface
Set PDP $=1$, as we have a passive (non-inverting) loop filter
Set PD $=0$ for normal operation (IC not in power down)
Set CPT = 0 for normal operation (CP not in tristate)
Set RES $=0$ for normal operation (IC not in reset)

Set to: (MUXOUT<<27)|(D<26)|(T<<25)|(R<<15)|(DB<<14)|(CP<<10)|(RM<<9)|(LS<<8)| (PDP<<7)|(PD<<6)|(CPT<<5)|(RES<<4)|4

Register 3:

Always set to 00000003, we don't use phase adjustments and resynchronisation

Register 2, 1, 0 :

This registers are used to calculate N for the mapping of f_pfd to f_out:

$$
f_{o u t}=f_{p f d} \cdot N
$$

FRAC2, MOD2, FRAC1, INT forms the formula:

$$
N=I N T+\frac{F R A C 1+\frac{F R A C 2}{M O D 2}}{16,777,216}
$$

INT: $23 . . .32767$ or $75 \ldots 65535$	(16bit $-4 / 5$ or $8 / 9)$
FRAC1: $1 \ldots . . .16777215$	(24bit)
FRAC2: $0 . . .16383$	(14bit)
MOD2: $2 \ldots 16383$	(14bit)

Furthermore, we use a 4/5 prescaler and enable autocal:

```
PRE=0
ACAL=1
```

Set to: $\quad($ FRAC2 $\ll 18) \mid($ MOD $2 \ll 4) \mid 2$ (FRAC1<<4)|1
(ACAL<<21)|(PRE<<20)|(INT<<4)|0

